
Designing for

Non-Functional Requirements

Seattle University, 2007

Vuillemot, Ward

Wong, Wai

Yager, David

TABLE OF CONTENTS

Abstract...1
Introduction...3
Performance...6
Usability..10
Reliability..13
Security...16
Conclusions..20
References..22

Abstract

Improving software quality involves reducing the quantity of defects within the

final product and identifying the remaining defects as early as possible. In fact,

defects found earlier in the development lifecycle cost dramatically less to repair

than those found later. However, engineers cannot address non-functional

quality requirements such as reliability, security, performance and usability early

in the lifecycle using the same tools and processes that they use after coding and

at later phases. Approaches such as stress testing for reliability, measuring

performance and gauging user response to determine usability are inherently

post-integration techniques. Accordingly, defects found with these tools are

more disruptive and costly to fix.

The goal of this paper is to gain an understanding of where in the development

lifecycle companies address non-functional requirements and what methods, if

Seattle University Page 1 of 23

Designing for Non-Functional Requirements Vuillemot, Yager & Wong

any, they are taking to address these requirements earlier. This research

highlights the sporadic industry acceptance of some popular methods for

designing for non-functional requirements and suggests some practical

approaches that are applicable for companies that also must consider the

demands of schedule and cost.

Seattle University Page 2 of 23

Designing for Non-Functional Requirements Vuillemot, Yager & Wong

Introduction

Software projects are subject to numerous external pressures and constraints.

As the cost of development, testing and maintenance increases, software quality

improvements that reduce the amount of rework and production defects become

integral to the success of projects. Traditionally, software teams address software

quality requirements, sometimes called non-functional requirements (NFRs),

using product-centric [1] methods. These methods are curative [2] and focus on

gathering metrics and testing to examine a product after construction to

determine whether it is within certain quality constraints. Dromey [2] has

identified a number of deficiencies with the exclusive use of the product-centric

approach:

• Testing is a non-productive part of software development and can

consume 50% or more of the cost of a project. Reducing the amount of

testing and related rework required can directly reduce cost.

• Reducing the number of defects or addressing them before the product is

created is much cheaper than repairing them after construction. This is

supported by Davis’ findings [3] that indicate the relative cost of fixing a

defect during each phase of a project.

• There are many well-researched methods with known benefits such as

prototyping and identifying personas that can be employed to address

quality requirements before software construction.

Mylopoulos, Chung and Nixon [1] proposed another approach to addressing

NFRs. They call it a process-oriented approach. In this preventative approach,

the goal is to prevent problems with quality from being injected into the product

during the requirements or design phases. Depending on the type of

requirement, this can be achieved with different tools such as critical path and

design reviews for performance, to managed-code architectures for security. The

Seattle University Page 3 of 23

Designing for Non-Functional Requirements Vuillemot, Yager & Wong

primary benefit of this approach is the reduction in defects found later in the

project and therefore a reduction in cost to the project. Some [4] have criticized

this method due to the difficulty of finding many defects without viewing the

product from the user’s perspective. And certainly, it is easier to measure a

product’s properties instead of investing effort into design approaches with

advantages that are difficult to quantify. Nonetheless, since the cost of finding a

defect during testing can be 50 times the cost of finding it during requirements

[3], the benefits of preventative quality management cannot be ignored.

The goal of this paper is to highlight the methods that the industry is currently

using to address NFRs and to identify whether these methods could benefit from

the process-oriented approach or whether they are already there.

We have limited our discussion to four distinct quality measures: performance,

usability, reliability and security. We discuss each of these in separate sections.

While other quality measures have different goals and motivations, the benefits

of addressing each earlier in the project are similar across all. For each of these

measures we discuss what our research indicates teams are doing to address the

requirement and we compare this with the preventative approach proposed by

researchers. Then we discuss what else teams could do to move towards a

process-oriented approach, or in some cases why that is not possible.

Each section contains a graph divided into three separate measurements: Design,

System and User. This represents what phase of the project addresses the NFR .

“Design” represents requirements gathering, documentation and functional

specification. “System” represents integration, compilation and testing. “User”

represents post-implementation error reporting and other forms of user

feedback. For each of these phases we provide three measurements. The first is

what a preventative method could be (Preventative Approach). The second is

what the respondent is currently doing (Current Approach), and the third is what

the respondent feels is the most important approach (Desired Approach).

Unfortunately, there is no recommended distribution of effort for projects

Seattle University Page 4 of 23

Designing for Non-Functional Requirements Vuillemot, Yager & Wong

wishing to follow a preventative approach. Instead we simply have the

recommendation of “the earlier the better”. So to allow comparison with the

curative and desired measurements, we distributed the preventative

measurement into 60% for design, 30% for system and 10% for user.

Research Method

Our project consisted of a survey submitted to a software company and the IT

department of an aerospace company. With half of the respondents, follow-up

email interviews were conducted to collect additional information. Respondents

held many roles including developers, developer managers, project managers,

analysts, architects and testers.

Seattle University Page 5 of 23

Designing for Non-Functional Requirements Vuillemot, Yager & Wong

Performance

The Problem

Since Connie Smith introduced the term Software Performance Engineering and

pointed out the fix-it-later approach that software engineering adopted for

performance requirements in her paper published in 1981, it has captured lots of

attention in academia [5]. Since then, academia has provided many possible

methods and solutions for handling the performance requirements early in the

design stage.

Those researchers who focus on addressing performance requirements early in

the design stages have came up with lots of ideas. For example, Kanchana and

Sarma propose applying the Taguchi methods on the software design process to

maximize the performance of the software[6]. Israr, Lau, Franks, and Woodside

came up with a light-weight performance model called Software Architecture and

Model Extraction (SAME) to help identify performance problems early during

software design[7]. Floch, Hallsteinsen, Stav, Eliassen, Lund, and Gjorven also

recommended another architecture model called MADAM (mobility- and

adaptation-enabling middleware) which aims for improving the performance of

mobile computing software design[8].

In contrast to the preventative approach proposed by Mylopoulos, Chung and

Nixon, some scholars still stress the importance of testing and validating

performance requirements after implementation. For example, Gregoriades and

Sutcliffe propose a scenario-based assessment tool called System Requirements

Analyzer (SRA) tool to validate the software performance requirements and

identify the problem areas and performance bottlenecks in the software [9].

Seattle University Page 6 of 23

Designing for Non-Functional Requirements Vuillemot, Yager & Wong

Our Findings

Performance

0%

10%

20%

30%

40%

50%

60%

70%

Design System User

Where Performance is Addressed

% of Respondents

Preventative Approach

Current Approach

Most Important Approach

Figure 1: This figure describes where in a product’s lifecycle (at design, at system test or when the user

receives the product) that our respondents address performance contrasted with an arbitrary preventative

approach

Our survey shows that 69% of the respondents address the software performance

requirements after the requirements and design phase of their project. Only

about 13% of the effort for improving performance is spent during requirements

gathering and 18% during design and documentation. Of all the individual areas,

the most effort (24%) is spent in internal testing and measurement.

When the respondents are asked how they address the performance

requirements, most of the people selected identifying scenarios and use cases that

are most important to their project and emphasize on improving the performance

of these features. The next most selected method is measuring the overall

performance of the software after implementation. The least used method was to

identity performance bottlenecks during integration and focus on those.

Where to go from here

A recent research survey by Balsamo, Marco, Inverardi and Simeoni shows that

even though there is no universal methodology for addressing performance

requirements early in the design, the model-based software performance

Seattle University Page 7 of 23

Designing for Non-Functional Requirements Vuillemot, Yager & Wong

prediction is mature enough for the software industry to adopt [10]. However, it

is clear from our survey that these performance prediction tools are not widely

adopted in the industry. Our respondents still rely heavily on simply measuring

the performance of their software and focusing efforts on improving the flow of

the critical performance path through their system.

Our interviews indicate that project cost and schedule constraints are the primary

reasons the industry favors traditional measurement methods to the newer

prediction tools. Assuming the customer finds initial performance acceptable,

our respondents are much more comfortable addressing performance problems

as they appear. This is especially true when competition causes the profitability

of a product to be dependent on the time to market.

Our survey data shows that the industry exerts substantial effort testing and

collecting measurement of their products’ performance. From these results

respondents then examine the critical path of their product’s execution to

determine if opportunities for improvement exist. Unfortunately, because they

perform these activities after code construction, there is no assurance that the

critical path was efficient to begin with. Research also shows that designing

performance requirements early in the project can greatly reduce the amount of

design and code changes in the later stage of the project, and thus, increase the

software maintainability [11].

One way to drive performance considerations earlier in the product’s design is to

couple performance requirement definition and specification with usability

studies. Since our survey indicates that customer perception is a ubiquitous

“requirement”, this would provide a chance for designers to test the performance

of their design prior to construction.

Having said that customer satisfaction really drives the performance

requirements in the industry, cost remains to be the biggest concern in the design

of performance requirements. From our data, the industry seems to show a

tendency of concern only to those performance requirements that have direct

Seattle University Page 8 of 23

Designing for Non-Functional Requirements Vuillemot, Yager & Wong

impact to customer satisfaction. Therefore, measuring the product after it has

been implemented favors the industry in pin-pointing only those ill-performed

area that may upset the customers. The industry seems to be very eager in solving

the performance issues by any means early in the design phase. However, due to

cost and schedule concerns, they would also like to address only those

performance issues that will impact the customers. Therefore, the academia

should focus on research that will solve these two problems simultaneously for

the industry.

A preventative approach to design performance does not mean that no curative

methods should be taken. Certainly measuring a software product is integral to

ensuring that the product meets the performance constraints established by the

customer. But this approach should be performed in concert with preventative

methods proposed by research.

Seattle University Page 9 of 23

Designing for Non-Functional Requirements Vuillemot, Yager & Wong

Latitude D620, 05/10/07
So this makes it sound like preventative methods are not being used mostly because of cost. Is there also a general lack of awareness of these tools that factors in, or were people aware of them and consciously not using them?

Usability

The Problem

The usability of a product refers to how easily users learn to use the product, how

efficient they are at performing tasks once they have learned it and how many

mistakes they make when they use the product. Usability also encompasses more

vague measurements such as perception and satisfaction. What tests must a

product pass to be deemed usable? Designers can quantify some aspects of a user

interface, such as number of clicks or keystrokes, number of complaints or even

the amount of time it takes for the user to become as productive on the product as

they were on the previous product. And if analysts establish goals for these

measures during the design phase, they can be an instructive method of

determining usability and preventing problems with usability before construction

begins. But other usability measures such as perception and satisfaction over

time have just as much impact on the usability of the product. They are

qualitative in nature and therefore difficult to target.

This is the point that our respondents start to rely on the skills of the team

members. They indicated that an experienced analyst is better able to determine

what makes a product “easy to use” than an inexperienced one, and so our

respondents made sure their project teams always included as many experienced

members as possible. In fact, the presence of one or more well-qualified

members had the power to offset other issues with funding such as poorly

supported testing.

Throughout this paper you will see that this approach is typical. When

preventative methods are not available or unused and curative methods are

insufficient, teams eventually fall back on experience to ensure that an NFR is

met. There are a number of issues with this approach. We will discuss these later

in the paper.

Seattle University Page 10 of 23

Designing for Non-Functional Requirements Vuillemot, Yager & Wong

Our Findings

Usability

0%

10%

20%

30%

40%

50%

60%

70%

Design System User

Where Usability is Addressed

% of Respondents

Preventative Approach

Current Approach

Most Important Approach

Figure 2: This figure describes where in a product’s lifecycle (at design, at system test or when the user

receives the product) that our respondents address usability contrasted with an arbitrary preventative

approach

The process of building a usable product lends itself well to the process-oriented

approach. We found that many of our respondents address usability early in

their development process. Specifically, 42% of the respondents rely on methods

such as prototyping, personas and other forms of customer feedback to get an

early handle on usability constraints and goals. While still not a majority, this is

more than the pre-coding consideration given to performance (31%), security

(39%) and reliability (negligible). Part of the reason for this is that usability is so

important to marketability of a product. Methods such as prototyping provide

customers and investors a chance to immediately respond to the product and give

indication to the designers where the weaknesses with the design lie. This gives

them confidence for continued funding and support. As a result, projects tend to

use these tools early and consistently.

Another reason for success of preventative methods is the relative maturity of the

tools themselves. Prototyping in particular, is ubiquitous, though teams apply it

in different ways. Some respondents mentioned the ease of use of low fidelity

Seattle University Page 11 of 23

Designing for Non-Functional Requirements Vuillemot, Yager & Wong

prototypes such as sketches. Simply drawing different versions of a user interface

is an inexpensive method of testing user response to different solutions. But

respondents indicate that relying on such prototypes exclusively can leave subtle

functionality open to interpretation. The gap between the business knowledge of

even the most harmonious customer and designer leads to assumptions,

misinterpretations and eventually, usability design flaws. And considering the

falling costs of higher-fidelity prototypes that provide most of the user interface

functionality without requiring a full design specification, respondents are

increasingly focusing more effort on enhancing their pre-coding building efforts.

This does not mean that teams use evolutionary prototypes. Evolutionary

prototypes are not just the inspiration for the final code – they are the final code.

Although 27% of our respondents do use this method, others indicated that code

built during the prototyping stage is not created with the same controls as

production code and should therefore be discarded. Furthermore, use of code

generated during design would actually violate the preventative model, since our

goal here is to focus on methods that occur before coding.

Where to go from here

Despite the acceptance of preventative methods of addressing usability

requirements, respondents overwhelming indicated that the customer has the

final say in whether the product meets usability requirements. Our respondents

are a good example of how a preventative approach can be used successfully.

Their customers are involved early through the use of interviews or personas to

define usability requirements. Then after coding, tools such as testing, surveys

and use studies are used to verify that those usability requirements have been

met. Addressing these requirements is important for ensuring that their

products meet qualitative measurements such as user perception.

Seattle University Page 12 of 23

Designing for Non-Functional Requirements Vuillemot, Yager & Wong

Reliability

The Problem

How do you know your system is reliable? Specifically, how do you ensure that

your system meets the reliability requirements of the customer? There are

numerous metrics for determining reliability: mean time to failure, defect reports

and counts, resource consumption, stability, uptime percentage and even

customer perception. Our respondents indicated that they use the following

methods equally to flush out these metrics:

• Static Code Analysis

• Maximum Test Coverage

• Load Testing

• Stress Testing

• Automated or Manual Error Collection

The problem with all of these approaches is that they are curative. The only way

to ensure software will be reliable using curative methods is to make sure that

every situation that could cause reliability issues is tested using real world

constraints. One of our respondents simplified this statement by saying that

“anything that CAN go wrong in a program is a potential cause of a reliability

issue”. Not only is it costly to write test cases for so many scenarios, the

execution of the tests themselves could take years. And that assumes you have

discovered all of the test cases. There is no way to prove that all tests have been

accounted for and therefore no way to know when you are done testing.

Seattle University Page 13 of 23

Designing for Non-Functional Requirements Vuillemot, Yager & Wong

Our Findings

Reliability

0%
10%
20%
30%
40%
50%
60%
70%
80%
90%

Design System User

Where Reliability is Addressed

%
 o

f
R

e
sp

o
n

d
e

n
ts

Preventative Approach

Current Approach

Most Important Approach

Figure 3: This figure describes where in a product’s lifecycle (at design, at system test or when the user

receives the product) that our respondents address reliability contrasted with an arbitrary preventative

approach

Our respondents approached reliability with decidedly curative approaches and

from figure 4, it is clear that they like it this way. Part of this may be due to the

lack of tools for building software designs that will result in reliable software.

Outside of selecting architectures or algorithms that are known to be reliable for

the given domain, there are few ways of ensuring reliability before writing a line

of code.

More than any other method, our respondents again rely on the skills of their

teams. Instead of writing test cases for every possible failure, they rely on their

analysts to design solutions that encourage reliability. They rely on their

engineers to select the appropriate architectures and algorithms. And they rely

on their developers to write code that won’t fail. To offset this non-scientific

approach to reliability they enforce rigorous testing procedures using methods

like static code analysis and stress testing. Then when the product is in the

customer’s hands, they automatically gather the remaining failures and address

them as they occur.

Seattle University Page 14 of 23

Designing for Non-Functional Requirements Vuillemot, Yager & Wong

When asked to identify the most important tool for addressing reliability, our

respondents consistently expressed responding to measurements such as crashes

over time, uptime and more qualitative measurements such as customer

perception or satisfaction. Although they expressed the need for more

preventative methods, there was no such method that they knew of or currently

perform that would be more important than the curative measures they already

take.

Where to go from here

Unfortunately, relying on the selection of an appropriate architecture is still a

passive preventative approach to addressing reliability. Given one weak analyst,

engineer or developer, a project will be at risk of experiencing reliability issues.

Dromey [2] introduces one of the more promising approaches. First, with help

from the analyst, the customer must define reliability constraints. This means

identifying the possible conditions or inputs that a system will be required to

handle, identifying the time or environmental constraints under which the

system must complete its functionality, and validating that the chosen design will

solve the right problem, correctly. Knowing these constraints, the designer

should now create functionality that checks for the satisfaction of them and

performs some action when they are not met. This approach is similar to the

practice of adding asserts to warn developers that an assumed constant is not

correct, but unlike asserts, this functionality is visible to the user and is not

removed during compilation.

It will be difficult to rationalize to project sponsors expending effort to produce

what is essentially non-value added functionality. Furthermore, this approach is

inherently dependent on the correct and complete specification of reliability

constraints. Nonetheless the added functionality proactively addresses reliability

before coding and gives designers a tool to impact the reliability of the software.

Seattle University Page 15 of 23

Designing for Non-Functional Requirements Vuillemot, Yager & Wong

Security

The Problem

Security has in recent years received much attention in both popular media and

academia. Kuper [12] notes that a significant amount of IT spending has been

focused on reactive, defensive “perimeter-related security” when instead a more

proactive approach to defending the data itself yields better results in terms of

security. Skalka [13] advocates that more than mere type safety and judicious

programming practices proposed to safeguard C, C++ et al. from buffer overflows

et cetera that we need to more strenuously march toward “language safety”

inherent in managed code such as C# and Java. McGraw [14] brings to light the

differences in the traditional “application security” that post facto looks to

mitigate security issues, versus the emerging trend of “software security” that

looks to engineer security into the design of the software itself; effectively

minimizing the necessity for “application security.” Another argument by

McGraw is that we need to appreciate the subtle difference in software security

versus security software. Secure software (software security) must be

fundamental to the architecture, not itself an adjunct (security software) we

include at the perimeter of our systems, deployed to protect ourselves from our

defective products.

While the general consensus is that we need to better architect our systems to be

secure, there remains the issue of managing the diametrically opposed

requirement of usability [15-20]. Take as example the existence of “low-friction”

installers from Microsoft and others some years back. The intent was to provide

a superior user-experience by having the system easily update itself with

whatever extensions and/or drivers were mandated by the user’s immediate

needs. However, this approach exposed a number of vectors into the system by

unscrupulous persons thereby creating opportunity for exploitation. In the

intervening years we have seen a reversal of opinion with more emphasis on

explicit management of system security by the user. Microsoft Vista’s new

Seattle University Page 16 of 23

Designing for Non-Functional Requirements Vuillemot, Yager & Wong

security policies prompt the user for confirmation whenever a potentially

compromising action is undertaken – even now there appears to be ongoing

tweaking by Microsoft to better manage the user experience on this front.

Seattle University Page 17 of 23

Designing for Non-Functional Requirements Vuillemot, Yager & Wong

Our Findings

Security

0%

10%

20%

30%

40%

50%

60%

70%

Design System User

Where Security is Addressed

% of Respondents

Preventative Approach

Current Approach

Desired Approach

Figure 4: This figure describes where in a product’s lifecycle (at design, at system test or when the user

receives the product) that our respondents address security contrasted with an arbitrary preventative

approach

In our survey we attempted to determine how, and through extension when, in

their process teams address security requirements.

45.5% of our respondents chose the following options:

• During design we analyze our data flow to determine vulnerable areas that

could comprise security or data integrity.

• We use static code analyzers to identify potential security issues.

The least chosen option (15.87%) amongst our respondents is:

• We use managed-code (C#, Java, etc.) so that security issues are addressed

[21] by the compiler in a consistently secure manner.

We see that nearly half of the activity of identifying security breaches occurs in

the design and system stages of development through the initial use of data flows

and a final shakedown using static analysis. If we include managed-code then we

Seattle University Page 18 of 23

Designing for Non-Functional Requirements Vuillemot, Yager & Wong

see than a fairly thorough portion of the software from design to deployment is

ensured to be secure.

More over, just as the current practices indicate a healthy reliance on upstream

processes to catch and fix security defects before they flow downstream to the

user, approximately 45% of our survey respondents indicated that, given no other

alternatives, they would ultimately measure the system rather than rely upon

users to ensure they satisfy security requirements.

Where to go from here

Without identifying the specifics of our survey population, a large percentage who

completed the survey do hail from a Pacific Northwest software company that has

very publicly made developing secure code a major initiative. Given the

responses we can conclude that this has been more than mere hyperbola. We do

not have research indicating whether this has indeed had the intended effect,

though; and therefore represents an opportunity for continued research.

Additionally, respondents are equally applying the best practices of: abuse cases;

security requirements; risk analysis; static analysis; external audits; et cetera at

enterprise-level operations.

We believe the growing trend in managed code (C# and Java) along with ready

availability of static analysis is already providing much needed support toward

engineering secure software. However, there appears to be opportunity to

provide more robust means of data flow analysis to aid software engineers in

evaluating the risks of proposed architectures.

Seattle University Page 19 of 23

Designing for Non-Functional Requirements Vuillemot, Yager & Wong

Conclusions

Throughout our research we found that teams invariably fall back on the skills of

their teams to ensure that there product meets quality requirements. Although

this can be a remarkably successful method of ensuring quality, there are

inherent flaws with this approach. First, it is costly. In an era where

management will invest enormous effort to implement outsourcing strategies

that break even only after several years of involvement, it is difficult to justify the

extra expense of more experienced personnel. This is because it is difficult to

determine the savings that was gained from having that person there. Of course,

if a project is well funded to begin with, this may be of little consequence.

Secondly, with performance, our respondents found that the intuition of even the

most experienced engineer is fallible. It is okay to discover that your “hunch”

about the non-functional aspects of your system was wrong, as long as there is

still time to fix it. But it would be far more cost effective and risk-conscientious if

these hypotheses could be confirmed while the design is still on paper.

The third and most devastating problem with relying on skill to mitigate quality

risks is that resources are by definition transient. You may have the most

effective project manager or the most experienced engineer, but what happens

when a better-funded or possibly emergent project comes along and entices your

mitigation resources away with compensation that you cannot compete with?

Given these issues, projects should not exclusively rely on the experience of their

staff to mitigate non-functional requirement issues. This does not mean projects

should not seek and employ the most talented people for the job. What it means

is that the presence of those resources should not be the only thing ensuring that

projects meet performance, usability, reliability and security requirements.

Controlling the non-functional quality aspects of software projects is imperative

for today’s software teams. Despite the problems with purely curative

Seattle University Page 20 of 23

Designing for Non-Functional Requirements Vuillemot, Yager & Wong

approaches to ensuring quality, we found that the software industry does not

have a common methodology for addressing quality requirements early in the

design process. There are some requirement-specific approaches that move

towards a preventative model, such as personas for usability and assert-like

functionality for reliability, but things like the budget of the project, experience of

the team, and customer feedback will impact how the team implements these

tools. From our survey it is clear that not only are preventative methods not in

wide use, but most teams are not interested in using them, or not aware of their

availability. In fact the most persistent method of ensuring non-functional

requirements is simply relying on team experience. The importance of meeting

non-functional requirements demands that more repeatable solutions be found.

Seattle University Page 21 of 23

Designing for Non-Functional Requirements Vuillemot, Yager & Wong

References

1. Mylopoulos, J., L. Chung, and B. Nixon, Representing and using
nonfunctional requirements: a process-oriented approach. Software
Engineering, IEEE Transactions on, 1992. 18(6): p. 483-497.

2. Dromey, R.G., Software Quality--Prevention versus Cure? Software
Quality Journal, 2003. 11(3): p. 197.

3. Davis, A.M. and D.A. Leffingwell, Using Requirements Management to
Speed Delivery of Higher Quality Applications. Rational Software
Corporation, 1995.

4. Lauesen, S. and H. Younessi, Is software quality visible in the code.
Software, IEEE, 1998. 15(4): p. 69-73.

5. Smith, C., Increasing Information Systems Productivity by Software
Performance Engineering. Proceedings CMG XII International
Conference, 1981.

6. Kanchana, B. and V.V.S. Sarma. Software quality enhancement through
software process optimization using Taguchi methods. 1999.

7. Israr, T.A., et al., Automatic Generation of Layered Queuing Software
Performance Models from Commonly Available Traces.

8. Jacqueline, F., et al., Using Architecture Models for Runtime
Adaptability. 2006. p. 62-70.

9. Andreas, G. and S. Alistair, Scenario-Based Assessment of Nonfunctional
Requirements. IEEE Transactions on Software Engineering, 2005. 31(5):
p. 392-409.

10. Balsamo, S., et al., Model-Based Performance Prediction in Software
Development: A Survey. IEEE Transactions on Software Engineering,
2004. 30(5).

11. Smith, C. and L.G. Williams, Software Performance Engineering: A Case
Study Including Performance Comparison with Design Alternatives.
IEEE Transactions on Software Engineering, 1993. 19(7).

12. Kuper, P., The state of security. Security & Privacy Magazine, IEEE, 2005.
3(5): p. 51-53.

13. Skalka, C., Programming Languages and Systems Security. Security &
Privacy Magazine, IEEE, 2005. 3(3): p. 80-83.

Seattle University Page 22 of 23

Designing for Non-Functional Requirements Vuillemot, Yager & Wong

14. McGraw, G., Software security. Security & Privacy Magazine, IEEE, 2004.
2(2): p. 80-83.

15. Balfanz, D., et al., In search of usable security: five lessons from the field.
Security & Privacy Magazine, IEEE, 2004. 2(5): p. 19-24.

16. Cranor, L.F. and S. Garfinkel, Guest Editors' Introduction: Secure or
Usable? Security & Privacy Magazine, IEEE, 2004. 2(5): p. 16-18.

17. Gutmann, P. and I. Grigg, Security Usability. Security & Privacy
Magazine, IEEE, 2005. 3(4): p. 56-58.

18. Ka-Ping, Y., Aligning security and usability. Security & Privacy Magazine,
IEEE, 2004. 2(5): p. 48-55.

19. Hamed, H. and E. Al-Shaer, Taxonomy of conflicts in network security
policies. Communications Magazine, IEEE, 2006. 44(3): p. 134-141.

20. Smith, S.W., Humans in the loop: human-computer interaction and
security. Security & Privacy Magazine, IEEE, 2003. 1(3): p. 75-79.

21. Wagner, S. and T. Seifert, Software quality economics for defect-detection
techniques using failure prediction, in Proceedings of the third workshop
on Software quality. 2005, ACM Press: St. Louis, Missouri.

Seattle University Page 23 of 23

Designing for Non-Functional Requirements Vuillemot, Yager & Wong

